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Abstract: According to recent theoretical developments, it might be possible to produce

mini black holes in the high energy experiments in the LHC at CERN. We propose here

a model based on the n-dimensional Vaidya metric in double null coordinates for these

decaying black holes. The associated quasinormal modes are considered. It is shown that

only in the very last instants of the evaporation process the stationary regime for the

quasinormal modes is broken, implying specific power spectra for the perturbations around

these mini black-holes. From scattered fields one could recover, in principle, the black hole

parameters as well as the number of extra dimensions. The still mysterious final fate of

such objects should not alter significantly our main conclusions.
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1. Introduction

New models with extra dimensions [1] predict the production of mini black holes in parti-

cle accelerators with sufficient large energies. Such events are expected to be obtained in

the LHC at CERN [2]. These n-dimensional mini black holes are expected to be highly

interacting, and, once formed, Hawking radiation [3] is expected to settle after possible

transient stages. Their phenomenological and observational consequences have been in-

tensively discussed. (See [4] for recent reviews). In particular, it is expected that their

net radiated power, and hence, their mass decreasing rate, be driven by the n-dimensional

Stefan-Boltzmann law [5], leading to

d

dt

(

m

MP

)

= −an

tP

(

m

MP

)− 2

n−3

, (1.1)

where tP and MP stand for the Planck time and mass, respectively, while an is the effective

n-dimensional Stefan-Boltzmann constant [5], which depends on the available emission

channels for the Hawking radiation [6]. Typically, however, one should expect an ≈ 10−3.

Eq. (1.1) can be immediately integrated,

m(t) = m0

(

1 − t

t0

)
n−3

n−1

, (1.2)

0 ≤ t ≤ t0, where the lifetime t0 of a black hole with initial mass m0 is given by

t0 =
n − 3

n − 1

(

m0

MP

)
n−1

n−3 tP
an

. (1.3)

Following Arkani-Hamed et al [1], the phenomenology of such mini LHC black holes can

be studied by setting the Planck scale in order to have MP ≈ 1TeV.

We recall that (1.1) is not expected to be valid in the very final stages of the black

hole evaporation, where the appearance of new emission channels for Hawking radiation

can induce changes [6] in the value of the constant an. Perhaps even the usual adiabatic

derivation of Hawking radiations is not valid any longer [7]. We do not address these points

– 1 –



J
H
E
P
1
0
(
2
0
0
7
)
0
8
6

here. We assume that the black hole evaporates obeying (1.2) for 0 ≤ t ≤ t0. The numerical

analysis, however, requires the introduction of a regularization for the final instants of the

evaporation process. Nevertheless, as we will see, our main results do not depend on such

final details.

Here, we consider the quasinormal modes (QNM) associated to a radiating n-

dimensional black hole with the decaying mass (1.2). Since the preferred emission channels

for Hawking radiation correspond to massless fields, we model these evaporating mini black

holes by means of an n-dimensional Vaidya metric [8, 9] in double-null coordinates [10 –

12]. The Vaidya metric corresponds to the solution of Einstein’s equations with spherical

symmetry in the presence of a radial flow of unpolarized radiation. Such evaporating mini

black holes, however, are not expected to emit isotropically [13, 14] and, hence, any realistic

model should not be spherically symmetric. Furthermore, a typical mini black hole created

in the LHC environment should not have zero angular momentum. Our simple model,

nevertheless, is a step toward the construction of more realistic ones. The identification of

stationary regimes [15] for the QNM in the non-spherically symmetrical case, for instance,

could simplify the analysis of more realistic configurations. We will return to these issues

in the last section.

In n-dimensional double-null coordinates (u, v, θ1, . . . , θn−2), the Vaidya metric has the

form [9]

ds2 = −2g(u, v)dudv + r2(u, v)dΩ2
n−2, (1.4)

where dΩ2
n−2 stands for the unity (n − 2) dimensional sphere, and g(u, v) and r(u, v) are

smooth non vanishing functions obeying [12]

g = −∂ur, (1.5)

∂vr =
1

2
− m(v)

(n − 3)rn−3
, (1.6)

where, for the present case of an outgoing radiation field (m′ < 0), v corresponds to the

retarded time coordinate. We adopt hereafter natural unities (tP = MP = ℓP = 1).

Our choice for the mass function m(v) is guided by the solution (1.2). Nevertheless,

the final stage of a black hole evaporation is a rather subtle issue. A black hole could

evaporate up to zero mass as described by (1.2), leaving behind an empty Minkowski-like

spacetime [16] (or even a naked singularity [17]), or it could evaporate until it reaches a

minimum mass, that is, turning into a massive remnant [18]. In order to circumvent these

problems in the numerical analysis, we introduce a regularization for the final stage of the

evaporation process. We consider the mass function

m(v) =







m0

(

1 − v
v0

)
n−3

n−1

, 0 ≤ v < v1 < v0,

A − B tanh ρ(v − v1), v > v1,
(1.7)

with ρ > 0. The constants A, B and ρ are determined by imposing conditions for the

continuity of m(v) and its first derivative in v = v1. Clearly, A−B = mF is the mass of the

final remnant. The regularization is effective only at the final instants of the evaporation
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process, (v0 − v1)/v0 ≪ 1, and mF ≪ 1TeV. We will show that, during the major part of

the evaporation process, the stationary regime for the quasinormal modes described in [15]

holds, implying a specific, and perhaps observable, power spectrum for the perturbations

around these mini black-holes. Besides, the perturbation power spectra should not depend

significantly on the final fate of the black-hole.

2. The quasinormal modes

We decompose a generic perturbation field φ as

φ =
∑

ℓm

r−
n−2

2 ψℓ(u, v)Yℓm(θ1, . . . , θn−2), (2.1)

where Yℓm stands for the scalar spherical harmonics on the (n− 2) unity sphere, for which

∂2
Ωn−2

Yℓm = −ℓ(ℓ+n− 3)Yℓm, where ℓ = 0, 1, 2, . . ., and m denotes a set of (n− 3) integers

(m1,m2, . . . ,mn−3) satisfying ℓ ≥ mn−3 ≥ m2 ≥ |m1| (See [19] for a concise description

of higher dimensional spherical harmonics). By using (1.5) and (1.6), the equation for ψℓ

reads
∂2ψℓ

∂u∂v
+ g(u, v)V (u, v)ψℓ = 0, (2.2)

where

V (u, v) =
1

2

(

ℓ(ℓ + n − 3)

r2
+

(n − 2)(n − 4)

4r2
+

(1 − σ2)(n − 2)2

4rn−1
m(v)

)

. (2.3)

The constant σ determines the type of the perturbation considered: σ = 0 corresponds to

scalar and gravitational tensor perturbations, σ = 2 to gravitational vector perturbations,

σ = 2/(n − 2) to electromagnetic vector perturbations, and σ = 2 − 2/(n − 2), finally, to

electromagnetic scalar perturbations [20].

We perform an exhaustive numerical analysis of the equations (1.5), (1.6), and (2.2)

along the same lines of the method proposed in [15]. In particular, we could verify that the

QNM stationary behavior for slowly varying masses reported in [15] is not altered in higher

dimensional spacetimes, see figure 1. Hence, provided the mass function m(v) varies slowly,

the QNM of (2.2) set down in a stationary regime, and the associated frequencies (ω̃R) and

damping terms (ω̃I) follow the track corresponding to 1/rh(v), where rh is the (aparent)

horizon [11] radius of an n-dimensional black-hole of mass m(v). In a more quantitative

way, one has here

ω̃R,I(v)

ωR,I
=

rh(0)

rh(v)
=

(

1 − v

v0

)− 1

n−1

, (2.4)

where ωR,I stand for the oscillation frequency (R) and damping term (I) of the QNM

corresponding to an n-dimensional Schwarzschild black hole with mass m0 = m(0). We

notice that the relation ωR ∝ 1/rh for n-dimensional Schwarzschild black holes has been

previously obtained by Konoplya in [21]. As in [15], we have used Gaussian initial conditions

for all the analysis, although equivalent results can be obtained for any localized initial

condition.
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Figure 1: QNM “instantaneous” frequencies (see [15]) for the equation (2.2). In the stationary

regime, the frequencies follow the track corresponding to 1/rh(v). The cases depicted here corre-

sponds to σ = 0, ℓ = 2, and a = 0.02. Note that, the smaller the value of an, the better the fit.

Our simulations strongly indicate that the condition for the QNM stationary

regime [15] must be generalized for the case of n-dimensional black holes as |r′′h(v)| < |ω̃I(v)|,
where ω̃I(v) is the smallest damping term of the system. In the present case, it reads

(

1 − v

v0

)2n−2

n−1

> a2
n





n − 2

(n − 3)2

(

2

n − 3

)
1

n−3 m
− 2n−3

n−3

0

ωI



 (2.5)

where ωI is the smallest damping term of an n-dimensional Schwarzschild black hole with

mass m0 = m(0), typically corresponding to scalar perturbations. For the LHC mini black

holes, the term between square brackets should be of order of unity, irrespective of n. Thus,

only in the very late times of the evaporation process (for typical small values of an, for less

than the last a
(n−1)/(n−2)
n fraction of the lifetime period) the stationary regime is broken.

Hence, the late time exponentially suppressed perturbation of (2.2) is well approximated

by

ψ̃(v) = e−ω̃Iv sin (ω̃Rv + δ) (2.6)

for 0 ≤ v < v0, and ψ̃(v) = 0 for v ≥ v0, where ω̃R,I are themselves functions of v given

by (2.4), and δ is an arbitrary phase.

Our main observation is that, for the typical values of the parameter an and m0 ≈
1TeV, the Fourier spectrum Ψ̃(f) of the stationary perturbations (2.6) is very close to

the the Fourier spectrum Ψ(f) of the perturbations corresponding to a n-dimensional

Schwarzchild case (m(v) = m0),

ψ(v) = e−ωIv sin (ωRv + δ) (2.7)

for v ≥ 0. This fact, clearly illustrated in figure 2, certainly would deserve a more rigorous
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Figure 2: The power spectra: |Ψ(f)|, the solid line, given by eq. (2.12); and |Ψ̃(f)|, the line with

points, calculated numerically from (2.6) and (2.4). They are indeed very close for the typical values

of a and m0 ≈ 1TeV. In particular, both spectra exhibit similar pronounced peaks. Note that the

discrepancies for large values of ω are due to the FFT aliasing effect for frequencies larger than the

Nyquist critical frequency [22], and not to real differences between |Ψ(f)| and |Ψ̃(f)|. The case

depicted here corresponds to n = 4, a4 = 0.002, ωR = 0.25, ωI = 0.01, and δ = 0.

analysis. Some simple estimations, however, do endorse the observation. From the linearity

of the Fourier transform and Parseval’s theorem, we have that
∫ ∞

0

(

ψ(v) − ψ̃(v)
)2

dv =

∫ ∞

−∞

∣

∣

∣
Ψ(f) − Ψ̃(f)

∣

∣

∣

2
df. (2.8)

Hence, provided the left handed side of (2.8) be small, Ψ(f) will be close (in the L2 norm)

to Ψ̃(f). The integral in the left handed side of (2.8) can be split as

I1 + I2 =

∫ v2

0

(

ψ − ψ̃
)2

dv +

∫ ∞

v2

(

ψ − ψ̃
)2

dv. (2.9)

The second integral can be estimated as

I2 ≤ 2

(
∫ ∞

v2

ψ2dv +

∫ ∞

v2

ψ̃2dv

)

≤ 4

∫ ∞

v2

e−2ωIvdv = 2
e−2ωIv2

ωI
. (2.10)

Typically, ωR and ωI are of the same order (unity), while an is much smaller (10−3). If one

chooses v2 corresponding, for instance, to 10 oscillation cycles of ψ(v), the value of I2 will

be less than e−20. This is the error involved in approximating the left handed side of (2.8)

by I1. On the other hand, during the 10 first oscillation cycles of ψ(v), the variations of

ω̃R,I(v) are of the order 1 − (100/99)1/(n−1) for black holes with initial mass m0 = 1TeV.

Hence, in the interval [0, v2], ψ(v) is indeed very close to ψ̃(v), implying that the left handed

side of (2.8) is small and, finally, that Ψ̃(f) is close to Ψ(f).

The Fourier spectrum Ψ(f) of the perturbation (2.7) can be easily calculated

Ψ(f) =
1√
2π

∫ ∞

0
ψ(t)e−ift dt =

1√
2π

ωR cos δ + (ωI + if) sin δ

(ωR)2 + (if + ωI)
2 . (2.11)
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Figure 3: Graphical solution of (2.13). It is clear that, for arbitrary phases δ, the peak of the

power spectrum (2.12) is located in the range given by (2.14).

The associated power spectrum

|Ψ(f)| =
1√
2π

√

(ωR cos δ + ωI sin δ)2 + f2 sin2 δ

(ω2
R + ω2

I − f2)2 + 4f2ω2
I

(2.12)

has a pronounced peak (see figure 2) at fmax given by

f2
max −

(

ω2
R − ω2

I

)

(

ω2
R + ω2

I

)2 − f4
max

= g(f2
max) =

1

2

(

sin δ

ωR cos δ + ωI sin δ

)2

, (2.13)

from where we can conclude that
√

ω2
R − ω2

I ≤ fmax ≤
√

ω2
R + ω2

I , (2.14)

provided |ωR| > |ωI|, see figure 3.

3. Final remarks

The most interesting part of our results concerns the characterization of the signals that

might come out of the black hole probe. From the peaks in the power spectra of the

perturbations around the evaporating mini black holes, it is possible to determine ωR and

ωI and, consequently, infer some of the black hole parameters as its initial mass m0 and even

the dimension n of the spacetime where it effectively lives. We do not expect, of course, the

gravitational perturbations associated to these mini black hole to be measurable. However,

we remind that the QNM analysis can be applied for any test field propagating around the

black hole. In particular, it also applies for real (confined to the brane) electromagnetic

perturbations. Moreover, since these higher-dimensional mini-black holes are expected

– 6 –
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to emit large fractions of their masses in the bulk [13], the assumption of a spherically

symmetrical n-dimensional Vaidya metric can be justified as a first approximation.

According to the discussion of last section, the late time behavior of electromagnetic

waves scattered by these evaporating mini black holes should exhibit a power spectrum

as that one depicted in figure 2, since the electromagnetic perturbations will be also of

the form (2.6) for large times. Furthermore, the energy carried by these perturbations

is negligible and, thus, they are expected to be fully sensitive to the higher dimensional

dynamics of the black hole. Hence, from a precise determination of the peak location for

real electromagnetic perturbations, we can get the relevant parameters of the mini black

hole, including the number of extra dimensions. For instance, for 4-dimensional black holes,

the QNM frequencies and damping terms for the first electromagnetic perturbations [23]

are ωR = 0.2483 and ωI = 0.0925, implying that the frequency peak of the electromagnetic

power spectrum be in the range

( m0

1TeV

)

~f = 230 to 265 GeV. (3.1)

Typically, the larger is the number of extra dimensions, the larger will be the peak fre-

quency, even surpassing the limit of 1TeV. However, one can, in principle, determine the

relevant parameters of the mini black hole by comparing the peaks of power spectra of real

(confined to the brane) perturbation fields with the calculated higher-dimensional QNM

frequencies and damping terms for the n-dimensional Schwarzschild black-hole [24].
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